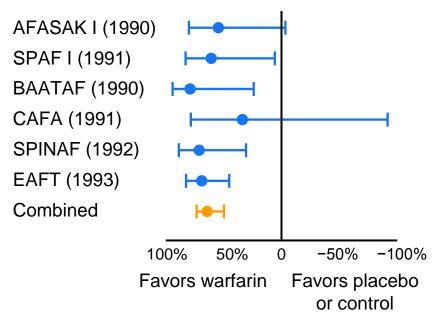
Identifying Patients for Anticoagulation: While Many Patients Remain Untreated, Who Should NOT be Anticoagulated?

Renato D. Lopes, MD MHS PhD Professor of Medicine Division of Cardiology Duke Clinical Research Institute Duke University Medical Center

From Thought Leadership to Clinical Practice

Disclosures


 Conflict of interest disclosures available at http://www.dcri.duke.edu/research/coi

Oral Anticoagulation for stroke prevention

Warfarin compared Relative Risk Reduction to control or placebo (95% CI)

Trial

RRR 64%

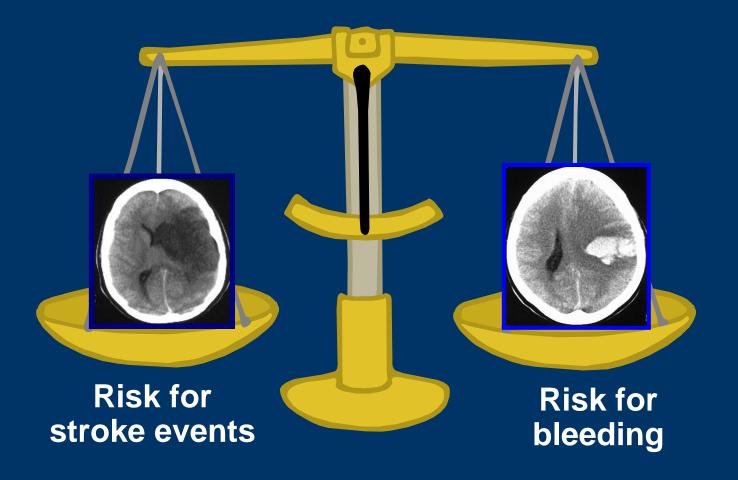
Warfarin vs. Placebo or Control (6 trials, total n=2,900)

Hart R, et al. Ann Intern Med. 2007;146:857-867.

NOAC compared Reto warfarin

Relative Risk Reduction (95% CI)

Trial


RRR 19%

NOAC vs. Warfarin (4 trials, total n=71,683)

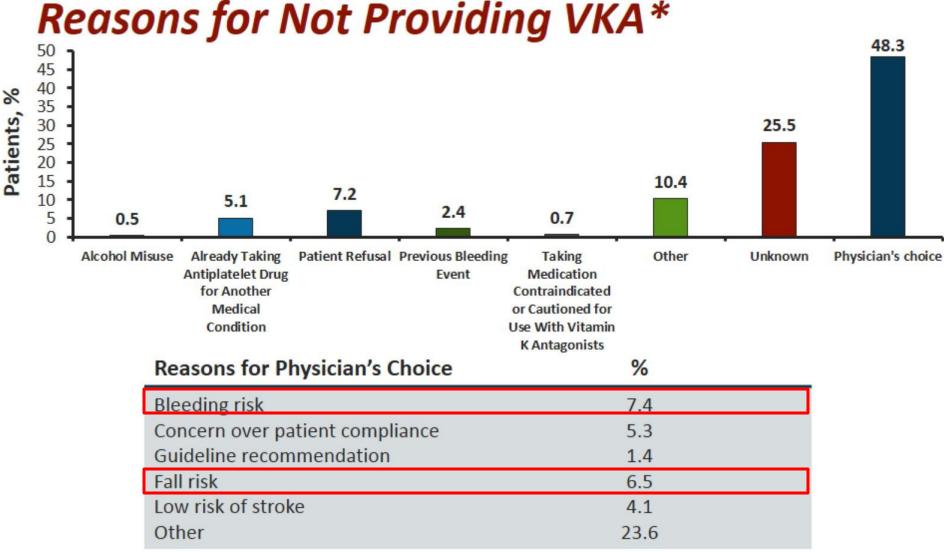
Ruff C, et al. Lancet. 2014;383:955-962.

Anticoagulant Therapy in Atrial Fibrillation

ARISTOTLE

Correlation between CHADS₂ and HAS-BLED scores

CHADS ₂	HAS-BLED					
	0–1	2	≥3			
0–1	2980	2142	1061			
	(43)	(32)	(23)			
2	2621	2549	1346			
	(38)	(38)	(30)			
≥3	1275	2091	2136			
	(19)	(31)	(47)			


Contraindications to Anticoagulation

ORBIT AF (n= 10,130; 13% with contraindication)

Contraindication [†]	Overall (n = 1330)	<75 (n = 493)	≥75 (n = 837)	₽§
Prior bleed	27.7	21.1	31.7	<.0001
Patient refusal	27.5	31.6	25.1	.01
High bleeding risk	18.0	15.4	19.5	.06
Frequent falls/frailty	17.6	5.9	24.5	<.0001
Need for dual APT	10.4	12.0	9.4	.14
Unable to adhere	6.0	7.3	5.3	.13
Comorbid Illness	5.3	6.1	4.8	.30

GARFIELD-AF

^{*}In patients with $CHADS_2$ score ≥ 2 in cohort 1.

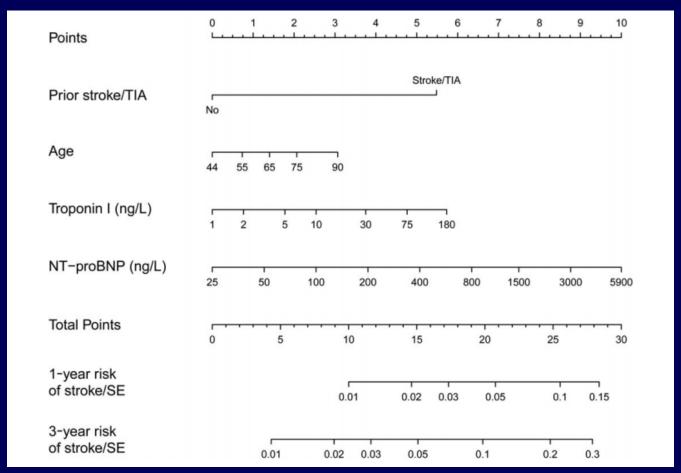
Kakkar AK, et al. PLoS One. 2013;8:e63479.

- GWTG National Inpatient Stroke Registry (2007-2011)
- Linkage to CMS claims

Reasons for No Anticoagulation in Afib Patients with a Pre-Stroke CHA₂DS₂-VASc≥2

Documented Reasons	Total N=58,084 (%)
Risk for bleeding	9476 (16.3)
Risk for falls	5968 (10.3)
Allergy to or complication with warfarin or heparins	341 (0.6)
Serious side effect to medication	583 (1.0)
Patient/family refused	2476 (4.3)
Mental status	652 (1.1)
Terminal illness	3616 (6.2)
At least 1 documented reason	19,835 (34.2)
No documented reason	38,249 (65.8)

Atrial fibrillation


The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation

Ziad Hijazi^{1,2*}, Johan Lindbäck², John H. Alexander³, Michael Hanna⁴, Claes Held^{1,2}, Elaine M. Hylek⁵, Renato D. Lopes³, Jonas Oldgren^{1,2}, Agneta Siegbahn^{2,6}, Ralph A.H. Stewart⁷, Harvey D. White⁷, Christopher B. Granger³, and Lars Wallentin^{1,2}, on behalf of the ARISTOTLE and STABILITY Investigators

New biomarker based risk score in AF

The new score was named ABC stroke score (Age, Biomarkers, Clinical history)

Nomogram for the variables in the ABC risk score proportional to the Cox-model coefficients

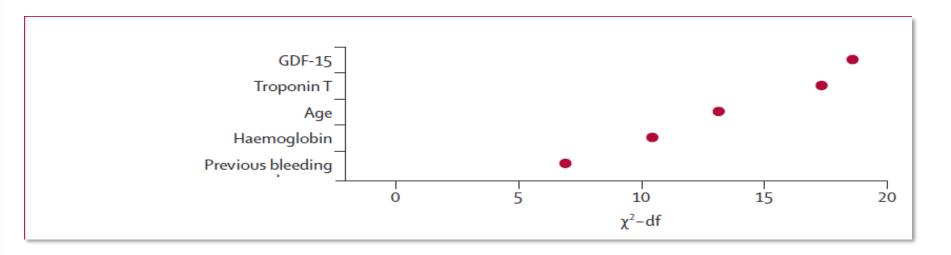
Comparison of ABC stroke risk score with other ARISTOTLE risk scores

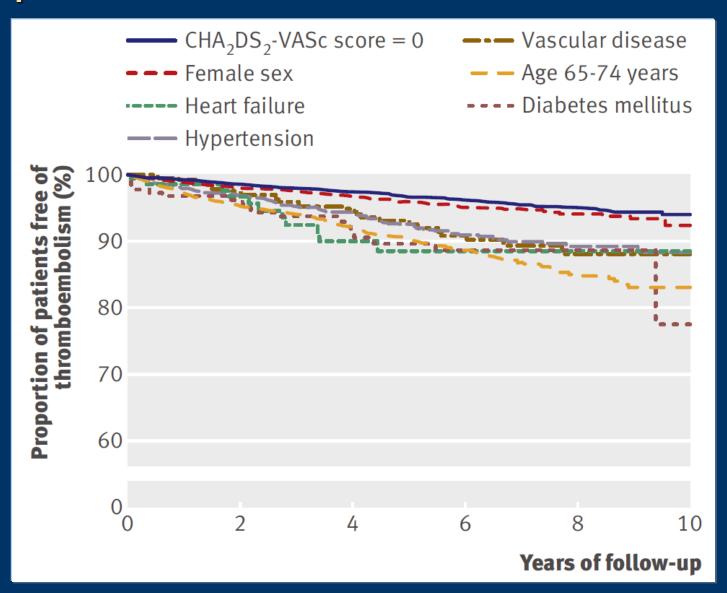
C-statistics for prediction of stroke or systemic embolism

Risk score	C-statistic
ABC	0.68
CHA ₂ DS ₂ VASc	0.62

	Condition	Points
\mathbf{C}	Congestive heart failure	1
Η	Hypertension $> 140/90$ mmHg or treated	1
A_2	$Age \ge 75 \text{ years}$	2
D	Diabetes Mellitus	1
S_2	Prior stroke or TIA	2
V	Vascular disease	1
A	Age $65 - 74$ years	1
Sc	Sex category (female)	1

CHA2DS2VASc score

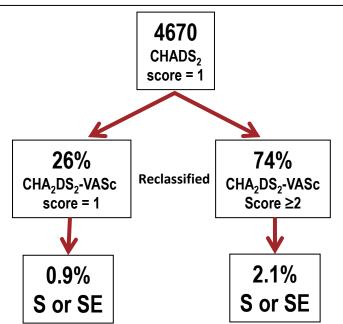

The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study

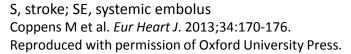

Ziad Hijazi, Jonas Oldgren, Johan Lindbäck, John H Alexander, Stuart J Connolly, John W Eikelboom, Michael D Ezekowitz, Claes Held, Elaine M Hylek, Renato D Lopes, Agneta Siegbahn, Salim Yusuf, Christopher B Granger, Lars Wallentin, on behalf of the ARISTOTLE and RE-LY Investigators

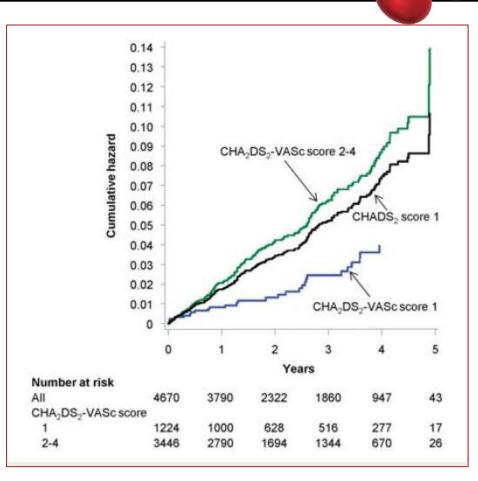
The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study

ABC-bleeding score (age, biomarkers [GDF-15, cTnT-hs (or creat clearance), and hemoglobin], and clinical history [previous bleeding]) score yielded a higher c-index than HAS-BLED and ORBIT scores for major bleeding in both the derivation (0.68 vs 0.61 vs 0.65) and validation (0.71 vs 0.62 vs 0.68) cohorts

Danish Hospital Registry Data 1997-2006 14,572 patients CHADS-VASc 0 or 1




CHA₂DS₂-VASc Identifies Patients with CHADS₂=1 Who May Not Benefit from Anticoagulation



Of 4670 patients from AVERROES & ACTIVE trials with CHADS₂ score = 1

- 74% up-classified to CHA₂DS₂-VASc score of
 2 definitely requiring anticoagulation and
- 26% to score of 1 not requiring anticoagulation

Kaplan-Meier cumulative hazard rates of composite outcome of ischemic or unspecified stroke and non-CNS sys embolism in patients treated with aspirin only or with combined aspirin and clopidogrel.

Should patients with or at risk of falls receive anticoagulation?

Choosing Antithrombotic Therapy for Elderly Patients With Atrial Fibrillation Who Are at Risk for Falls

Malcolm Man-Son-Hing, MD, MSc, FRCPC; Graham Nichol, MD, MPH, FRCPC; Anita Lau; Andreas Laupacis, MD, MSc, FRCPC

 Among older patients, falling is common (about 30% fall at least once a year), and subdural hematomas are uncommon

"... persons taking warfarin must fall about 295 times in 1 year for warfarin to not be the optimal therapy."

Anticoagulation in Patients with AF at Risk for Falls

ICH rates per 100 patient-years¹

High fall risk: 2.8

- Other patients: 1.1

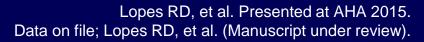
- Traumatic ICH: 2.0 vs 0.34

 Ischemic stroke rates per 100 patient-years

High fall risk: 13.7

Other patients: 6.9

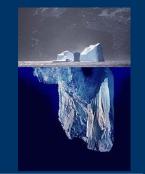
RISK¹:
HRs: Independent Predictors of ICH


Factor	HR (95% CI)
Prior stroke	2.1 (1.6-2.7)
Prior major bleed	1.9 (1.4-2.4)
Neuropsychiatric impairment	1.4 (1.0-3.1)

There is no good evidence that quantifies the degree to which "fall risk" or a "history of falls" increases the chance of serious ICH.

Rates of Intracranial Bleeding by Location, Type and Randomized Treatment

	Apixaban	Warfarin	Hazard Ratio (95% CI)	p-value
	Rate (n)	Rate (n)	Apixaban vs. Warfarin	
All Intracranial (n = 174)	0.33 (52)	0.80 (122)	0.417 (0.302 - 0.577)	<.0001
Spontaneous (n = 119)	0.26 (41)	0.51 (78)	0.515 (0.353 - 0.751)	0.0006
Traumatic (n = 47)	0.06 (10)	0.24 (37)	0.264 (0.131 - 0.531)	0.0002
Intracerebral (n = 106)	0.22 (34)	0.47 (72)	0.462 (0.308 - 0.695)	0.0002
Spontaneous (n = 94)	0.20 (31)	0.41 (63)	0.482 (0.314 - 0.741)	0.0009
Traumatic (n = 12)	0.02 (3)	0.05 (8)	0.367 (0.097 - 1.382)	0.1382
Subdural (n = 43)	0.06 (10)	0.22 (33)	0.296 (0.146 - 0.601)	0.0007
Spontaneous (n = 14)	0.02 (3)	0.07 (11)	0.266 (0.074 - 0.953)	0.0419
Traumatic (n = 29)	0.05 (7)	0.14 (22)	0.311 (0.133 - 0.729)	0.0072
Subarachnoid (n = 14)	0.03 (5)	0.06 (9)	0.544 (0.182 - 1.624)	0.2753
Spontaneous (n = 8)	0.03 (5)	0.02 (3)	1.637 (0.391 - 6.849)	0.4999
Traumatic (n = 6)	0.00 (0)	0.04 (6)		



How much AF is enough to increase the risk for stroke? Studies evaluating risk of stroke vs AF burden

Year	Study	n	AF Burden Measure	HR for stroke
2003	MOST	312	5 min	6.7 p=0.02
2005	Capucci	725	>24 hrs	3.1 p=0.04
2009	Botto	568	CHADS + AF burden	6.2 (5 vs 0.8%)
2009	TRENDS	2486	5.5 hrs	2.2 p=0.06
2012	Home monitor CRT	560	3.8 hrs	9.4 p=0.006
2012	ASSERT	2580	6 min	2.5 p=0.008

Glotzer T, et al. *Circulation* 2003;107:1614-9. Capucci A, et al. *J Am Coll Cardiol* 2005;46:1913-20. Botto GL, et al. *J Cardiovasc Electrophysiol* 2009;20:241-8. Glotzer T. *Circ Arrhythm Electrophysiol* 2009;2:474-80 Shanmugam N, et al. *Europace* 2012;14:230-7.. Healey JS, et al. *N Engl J Med* 2012;366:120-9. Camm AJ, et al. *Am J Cardiol* 2012;110:270-276.

Should we be looking for and treating subclinical, silent AF? ASSERT 2580 pts w/ PPM or ICD, monitored x 3 mo

	Device-Detected Atrial Tachyarrhythmia				Device-Detected Atrial		
Event	Absent N=2319		Present N= 261		Tachyarrhythmia Present vs. absent		
	events	%/year	events	%/ year	RR	95% CI	р
Ischemic Stroke or Systemic Embolism	40	0.69	11	1.69	2.49	1.28 – 4.85	0.007
Vascular Death	153	2.62	19	2.92	1.11	0.69 – 1.79	0.67
Stroke / MI / Vascular Death	206	3.53	29	4.45	1.25	0.85 – 1.84	0.27
Clinical Atrial Fibrillation or Flutter	71	1.22	41	6.29	5.56	3.78 – 8.17	<0.001

ARTESIA

<u>APIXABAN FOR THE REDUCTION OF THROMBO-EMBOLISM IN PATIENTS</u>
WITH DEVICE-DETECTED SUB-CLINICAL ATRIAL FIBRILLATION

From Thought Leadership to Clinical Practice

Study Design

Patients with:

- SCAF (at least 1 episode ≥6 min but none >24 hrs)
- Increased risk of stroke

Active aspirin
81 mg OD
+
Placebo apixaban bid

Active apixaban
5 mg or 2.5 mg* bid
+
Placebo aspirin OD

Follow-up Visits at 1 month and every 6 months

Double-blind, double-dummy design

Follow-up Visits at 1 month and every 6 months until 248 primary efficacy outcomes (est. avg 3 yrs)

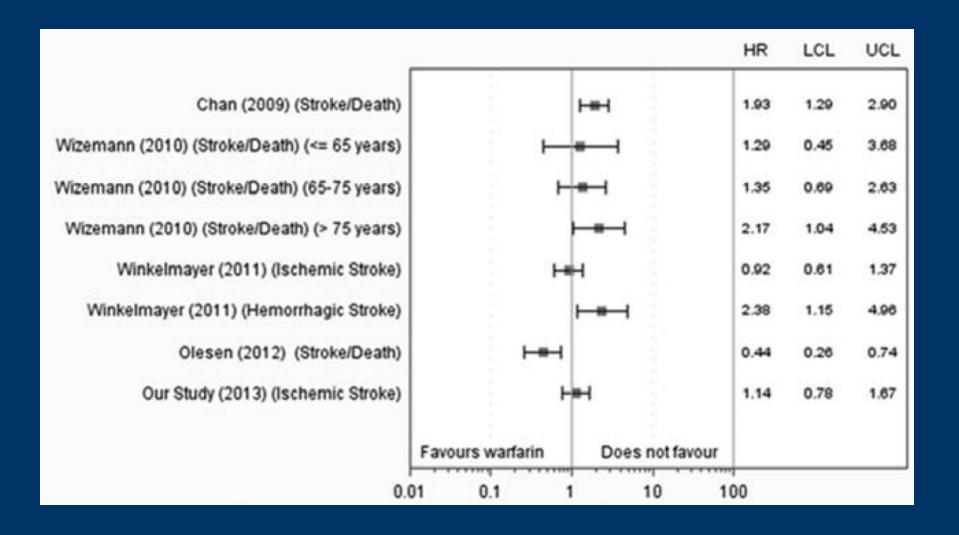
Primary Efficacy Outcomes:

Primary

Safety Outcomes:

Stroke (including TIA with imaging)

Major Bleeding (ISTH)


Systemic Embolism

- * 2.5 mg if either of the following:
- At least 2 of 3 of:
 - Age ≥ 80
 - Weight ≤ 65 kg
 - Serum Creatinine ≥ 133 µmol/L (1.5 mg/dL)
- Ongoing need for inhibitor of both CYP3A4 and Pglycoprotein

Atrial Fibrillation in Hemodialysis

- AF prevalence reported up to 27% in hemodialysis population, at least twice that of age-matched patients not on HD
- Most strongly related to age; Genovesi found 17% in age 51-60, 37% in 71-80 years
- USRDS/ Medicaid data, increase from 2% to 17% over age range from <55 to >85 years

AF, dialysis, warfarin use in Ontario and Quebec, 1998 to 2007

Reasons for not using OAC for AF with risk factors

- Very high risk of major/lifethreatening bleeding or ICH with low/moderate CHADSVASC score
- Unable to tolerate warfarin and unable to afford NOAC
- CHADSVASC =0 in male or 1 (female)
- CHADSVASC 1 (male) or 2 (female): not everyone (Bleeding risk, chadsvasc criterion)

- Patients with AF and stable CAD/stent and CHADSVASC<2
- SubClinical AF (6 min to 24 hours)
- Dialysis ??
- Patients with Left atrial appendage occlusion device

"In medicine, therapeutic decisions should be based on science; the 'art' of medicine is in how you interact with the patient."

- Robert M. Califf MD

Thank you!

From Thought Leadership to Clinical Practice